Editorial: Mechanical Signaling in Plants: From Perception to Consequences for Growth and Morphogenesis (Thigmomorphogenesis) and Ecological Significance
نویسندگان
چکیده
Plant morphogenesis and its regulation have fascinated researchers for more than two centuries. Among determinants of morphogenesis mechanical signals appear as an important cue. The fact that plants respond to mechanical stimuli was reported by Darwin in the 1850's. As described by Iida in this research topic, mechanical stimuli were used in traditional agriculture practices like mugifumi. In the past 40 years, the study of mechanical signaling in plants has regained interest because of its implication in fundamental processes of organo-and morphogenesis and their potential as an innovative means of controlling plant growth. The focus of this research topic is the quantification of mechanical signals and of their effects on plant growth, the ecological significance of mechanoperception and thigmomorphogenesis, and the potential use of mechanical stimuli in agriculture practices. The papers in this research topic summarize the current state of knowledge, present new experimental results, identify areas where further investigation is warranted, and propose investigative protocols. Mechanical signals can come from internal forces due to turgor pressure or externally from the environment. In natural conditions, aerial portions of plants experience mechanical stimuli due to wind, snow and rain, while aquatic plants experience water flow, waves or tides. Plants perceive, transduce respond physiologically to mechanical signals, collectively referred to as thigmomorphogenesis. Thigmomorphogenesis has been described in herbaceous as well as woody plant species. In growing shoots and roots, the first response observed after a mechanical signal is perceived is a transitory growth cessation followed by a progressive recovery of elongation rate and an increase of radial growth rate. When repeated mechanical signals are applied, the classical thigmomorphogenetic growth response of aerial plants is a reduced elongation of axes and, for plants which exhibit an active cambial growth, an increase of growth in girth. Thigmomorphogenesis in aquatic plants has been less well examined. This research topic includes two articles on mechanosensing in aquatic plants. Schoenlynck et al. examine the response of the aquatic plant Egeria densa to hydrodynamic stress and describe
منابع مشابه
Arabidopsis Touch-Induced Morphogenesis Is Jasmonate Mediated and Protects against Pests
Plants cannot change location to escape stressful environments. Therefore, plants evolved to respond and acclimate to diverse stimuli, including the seemingly innocuous touch stimulus [1-4]. Although some species, such as Venus flytrap, have fast touch responses, most plants display more gradual touch-induced morphological alterations, called thigmomorphogenesis [2, 3, 5, 6]. Thigmomorphogenesi...
متن کاملThe effects of mechanical stress and spectral shading on the growth and allocation of ten genotypes of a stoloniferous plant.
BACKGROUND AND AIMS Because plants protect each other from wind, stand density affects both the light climate and the amount of mechanical stress experienced by plants. But the potential interactive effects of mechanical stress and canopy shading on plant growth have rarely been investigated and never in stoloniferous plants which, due to their creeping growth form, can be expected to respond d...
متن کاملA Chick Embryo in-Vitro Model of Knee Morphogenesis
Background: In this feasibility study, a mechanically loaded in-vitro tissue culture model of joint morphogenesis using the isolated lower extremity of the 8 day old chick embryo was developed to assess the effects of mechanical loading on joint morphogenesis. Methods: The developed in-vitro system allows controlled flexion and extension of the chick embryonic knee with a range of motion of ...
متن کاملStrain mechanosensing quantitatively controls diameter growth and PtaZFP2 gene expression in poplar.
Mechanical signals are important factors that control plant growth and development. External mechanical loadings lead to a decrease in elongation and a stimulation of diameter growth, a syndrome known as thigmomorphogenesis. A previous study has demonstrated that plants perceive the strains they are subjected to and not forces or stresses. On this basis, an integrative biomechanical model of me...
متن کاملEditorial: Global Change, Clonal Growth, and Biological Invasions by Plants
Global changes in climate, land use, nutrient availability, acidity, populations of harvested or undesired species, and concentrations of toxins are now widely evident. Their ecological and evolutionary consequences are likely to be great but are often hard to identify or anticipate because of the multiple interactions that shape most ecological systems. One potentially important set of interac...
متن کامل